
 1

Redefining Tactical Operations for
MER using Cloud Computing

Joseph C. Joswig and, Khawaja S. Shams
Jet Propulsion Laboratory/California Institute of Technology/NASA

4800 Oak Grove Drive
Pasadena, California 91109

Phone (818) 298-4834
Fax (818) 393-5074

Joseph.C.Joswig@jpl.nasa.gov and Khawaja.S.Shams@jpl.nasa.gov

Abstract—The Mars Exploration Rover Mission (MER)
includes the twin rovers, Spirit and Opportunity, which
have been performing geological research and surface
exploration since early 2004. The rovers’ durability well
beyond their original prime mission (90 sols or Martian
days) has allowed them to be a valuable platform for
scientific research for well over 2000 sols, but as a by-
product it has produced new challenges in providing
efficient and cost-effective tactical operational planning. ***

An early stage process adaptation was the move to
distributed operations as mission scientists returned to their
places of work in the summer of 2004, but they would still
came together via teleconference and connected software to
plan rover activities a few times a week. This distributed
model has worked well since, but it requires the purchase,
operation, and maintenance of a dedicated infrastructure at
the Jet Propulsion Laboratory. This server infrastructure is
costly to operate and the periodic nature of its usage
(typically heavy usage for 8 hours every 2 days) has made
moving to a cloud based tactical infrastructure an extremely
tempting proposition.

In this paper we will review both past and current
implementations of the tactical planning application
focusing on remote plan saving and discuss the unique
challenges present with long-latency, distributed operations.
We then detail the motivations behind our move to cloud
based computing services and as well as our system design
and implementation. We will discuss security and reliability
concerns and how they were addressed.

TABLE OF CONTENTS

1. INTRODUCTION ...1	
2. LEGACY PERSISTENCE ...2	
3. CLOUD PERSISTENCE ...4	
4. RELATED AND FUTURE WORK ..5	
5. CONCLUSION ..6	
REFERENCES ..6	
BIOGRAPHY ..7	

*
 978-1-4244-7351-9/11/$26.00 ©2011 IEEE

*
 IEEEAC paper #1652, Version 3, Updated January 11, 2011

*
 This research was carried out at the Jet Propulsion Laboratory, California

Institute of Technology, under a contract with the National Aeronautics and
Space Administration.

1. INTRODUCTION

Activity Planning for the Mars Exploration Rover Mission
(hereafter MER) is a time consuming and intensely detail-
oriented process in which teams of scientists and engineers
collaborate to develop the best plan for upcoming planning
cycle. Due to the communications delay of up to 20 minutes
between Earth and Mars, operations are planned out for a
complete sol or even multiple sols in an iterative process.
The planning team balances scientific priorities from
various theme groups such as Atmospheric Science and
Geology with underlying rover safety constraints such not
exceeding limits on power usage and on-board memory
consumption. The end result is an activity plan that contains
the list of activities and parameters that the robot will be
instructed to perform such as acquiring imagery, driving to
selected goals, usage of individual instruments, as well as
engineering tasks.

Early MER mission planning was done using Jet Propulsion
Laboratory’s The Science Activity Planner, the 2004 co-
winner of NASA Software of the Year. The Science
Activity Planner (hereafter SAP) is used for both downlink
data analysis and uplink activity planning [1]. Data analysis
is focus on image and mosaic browsing and annotation with
mission targets. Activity planners used SAP onsite at JPL to
develop and refine rover plans as a centralized team [2]. As
the mission’s success continued, critical parties were eager
to return to their respective home institutions and the
development of a distributed solution was required. One
trivially simple option that has been used on a limited basis
is desktop sharing, which allows the user’s to leverage
existing 3rd party software to connect to JPL machines over
VPN and use the centralized software application without
any modification. The downside of such a system is
potentially poor performance for users based long distances
away from Pasadena, CA be it stationed across the country
in New York or even internationally. The high latency these
users experience is unavoidable, and particularly not user-
friendly, so instead a client – server system, centered on
Maestro for MER, was built to better support distributed
operations.

Maestro for MER is the thick client desktop application
built as the successor to SAP. Maestro for MER offers

 2

improved downlink and uplink capabilities compared to
SAP while having low hardware requirements such that
users can run it on their laptops so long as they have an
active network connection to JPL. Maestro for MER is built
on the Eclipse Rich Client Platform that supports
deployment on multiple platforms. Maestro’s initial
capabilities included activity plan editing, image and mosaic
searching and viewing, as well as targeting which allows the
users to pick out points of interest. Over it’s lifetime
Maestro’s downlink capabilities have been updated to
include support for new features such as overhead mapping
provided by the HiRISE camera on the Mars
Reconnaissance Orbiter to aid in creating more accurate
rover maps then previously possible [3]. Additionally the
Activity Planning / uplink capabilities have been improved
with support for follow along planning, but one area that
was lagging behind was Plan Saving and Retrieval,
particularly for remote users. In this paper we will focus on
the various implementations we’ve utilized for the saving,
searching, and loading of activity plans over the course of
the mission.

2. ACTIVITY PLANNING

Plan Model—Activity Plans are the result of the planning
process. Plans composed of top-level meta-data such as
modification time, author, and plan name as well as the
content of the plan which is a list of Activity Groups [4].
Activity Groups are named containers that have zero or
more Activities. Activities correspond to the individual
actions that the robot will be instructed to perform. Some
types of activities are image captures, robot drives, and
instrument power activation. These activities then have
dozens of individual parameters, which specify the exact
behavior. In addition to their parameters, the resource usage
of each activity is also shown. The exact details of the
structure’s hierarchy are not of particular importance, but
the Object Oriented design context is critical to
understanding the pros and cons detailed below in database
storage example.

1) Activity Plan
a) Meta Data
b) Activity Group 1

i) Activity 1
(1) Parameter 1
(2) Parameter 2

ii) Activity 2
c) Activity Group 2

Plans are created in a custom table editor that provides the
user with an overview of the resources usage of individual
components and the plan as a whole. The contents of the
currently loaded activity dictionary are shown in a tree view
and the user can drag and drop individual activity
definitions from the dictionary into currently open plans.

File Based Persistence—SAP was initially developed to run
locally on JPL’s workstations in the confines of the Science
Operators Working Group (SOWG) meeting room. Due to
this configuration the most direct mechanism was file
system based persistence. All machines were on the same
network so they used NFS (Network File Systems) to save
the plans to disk. Plans were serialized to Rover Markup
Language (RML), an XML based interchange format, using
Castor. This system had high performance due to locality to
the storage medium. Plans were stored in a well-defined
structure based on meta-data such as what sol they were
used on, but there was no additional integrated search
capability.

Hibernate Database Persistence—As previously mentioned
the impetus for developing Maestro for MER was tied to the
need to support distributed operations. A case study of
potential solutions at the time led to the decision to store
Activity Plans in a relational database and use Hibernate to
perform the object-relational mapping. Using a relational
database for persistence had additional benefits in that plans
could be easily searched via SQL as well as precisely
updated. Hibernate’s typical mapping of objects creates a
database column for each primitive (Integers, String,
floating point numbers, and Boolean) field in a class. Fields
that are complex objects and don’t have a direct mapping to
an existing SQL type are referenced using a one-to-one or
many-to-one reference as appropriate using a lookup table.
This schema design effectively means that each activity plan
is stored, not in a single database tuple, but rather in
hundreds of interconnected tuples since Activities, Activity
Groups, Plans, and Parameters each are stored in separate
tables. Saving a plan meant making serial connections to the
database server and executing one SQL statement for each
tuple. Activity Plan integrity was ensured using standard
relational database concepts such as transactional reads and
writes and foreign key constraints.

A major improvement in moving from SAP to Maestro for
MER was the addition of support for Plan Searching. As
Maestro was being designed the MER mission was
continuously generating new plans which made it harder to
locate an individual plan from the past if the user didn’t
know off-hand the specific details of when it was created
and what stated it was last in, since those two criteria had
determined the path of the file system

 3

Figure 1: MER Plan Search Dialog

Implementing Plan Searching was a natural fit with the
move to relational database storage since we could write
custom queries to target specific fields in the plan model
and allow users to look for plans containing references to
specific targets and use of particular instruments.

One unique trait of MER planning is the iterative process of
plan refinement and the accompanying roles and plan states.
[4] Starting with a standard plan template the SOWG
members go through various stages where they develop a

skeleton of the day’s activity together, then separately and
in parallel the various instrument leads will then fine tune
Activity Groups relating to their instrument of concern. In
this ‘Refinement’ stage the instrument leads will be
restricted from structural modifications to the plan and can
only modify the parameters of the activities in the groups
that they own. When users have completed their individual
refinement they then perform a partial plan save which
updates only the database tuples for which they have write
permission. This partial plan saving process fits naturally
with the flattened database structure as we can precisely
update the appropriate activity parameters and we don’t
need to concern ourselves with conflicts from multiple
temporally close plan saves since each user will be updating

a mutually exclusive component of the plan. There is still
the requirement on a separate capability for the users to
receive notification of external changes and this is
accomplished using JMS.

The Hibernate based approach was an effective
implementation and allowed for the newly added
requirement of remote operations as well supporting the
newly added functionality such as partial plan saves and
plan search, but it had an unanticipated flaw. Once we
moved to supporting remote users, we noticed the dramatic
effect high latency connections had on Plan Saving and
fetching. The serial nature of the tuple updates meant that if
a user had a 25ms latency to JPL and their plan save
touched 300 tuples the save would take almost 8 seconds to
complete. If that was the worst case it likely would have
been acceptable, but MER users were accustomed to
creating template plans which contained several dozen
activities and in excess of 1000 individual parameters and
only exacerbated this performance bottleneck. The next step
was to ameliorate this worst case.

Hibernate Database over ReST Persistence—The
previously mentioned worst-case performance problem
became quickly evident as Maestro received wider adoption
from the distributed science community. One of the benefits
of our original design was that we had a smart client-dumb
server approach so there was little overhead in terms of
server maintenance. Our existing institutional Database SA
could perform backups and restores as well as monitor the
server’s uptime., but we needed a better option. Our next
improvement was to turn to Representational State Transfer
(hereafter ReST) and built a smart server. Since the high
latency was the biggest bottleneck we designed a ReST
server that sends and receives the plan as serialized binary
blob over VPN. The server has now the single point of
contact is the existing plan database and their location on
the same network ensures low latency and significantly
reduced save and load times.

The Maestro client was updated to contact the ReST server
via HTTP Put, Get, and Delete for creating, fetching and
deleting plans. Functionally the capabilities remained the
same, but with improved performance at the cost of
additional maintenance overhead as a separate server

Figure 3: Plan persistence using a ReSTlet
intermediary

Figure 2: Direct Database Persistence

 4

needed to be built and deployed with each update. The
ReST based architecture improved the user experience
significantly for remote users, but recent technological
developments have led to even higher performing options.

3. CLOUD PERSISTENCE

As mission operations have continued the size of the
planning database has continued to increase. Additionally
the operations process has been streamlined so that multi-
sol plans are now the norm. The combination of longer and
therefore larger plans, plus data accumulation over time
created more total data in the database, and evolving
technology has led us to look at new options. The Maestro
team has started optimizing the planning software
responsible for the bottlenecks in the pipeline. Our solution
involves novel use of cloud computing to optimize the
process, which enables us to elastically expand and contract
the resources available to our database on demand, while
only paying for the compute capacity we utilize. Our
solution decouples the meta-data about the plan from the
actual plan data and stores them separately. The plans are
stored as blobs in Simple Storage Service (S3), while the
metadata is indexed in SimpleDB. With this design, plan
searches resolve within tens of milliseconds, including
network latency, while the largest plans can be retrieved
within a matter of a few seconds.

The unique solution effectively leverages cloud computing
to deliver performance and scalability. For indexing the
plans, we utilize SimpleDB, a database service provided by
Amazon Web Services (AWS). SimpleDB is a document
oriented database that provides a Restful interface to our
data, while offering scalable searching mechanism. JPL
only pays for the storage of our data and for exactly the
cycles used by our queries. Furthermore, SimpleDB
automatically scales up the capacity for our database
whenever it faces heavy queries or saves. This enables us to
provide a streamlined operations even in the busiest of
times. This database enables us to quickly search across
thousands of plans without opening a single one to obtain
all of their associated metadata. This is a great fit since plan
searching and saving tend to be very temporally clustered
and bursty operations centered around the planning cycle’s
timeline.

The plans are stored in S3. S3 is a scalable data store that is
designed to handle heavy traffic. Furthermore, S3 replicates
our files to ensure redundant copies are available in case of
a storage failure. S3 also provides a Restful interface to all
our files that enables us to write simple programs to
download, upload, or delete files in the data store using
standard HTTP methods PUT, POST, DELETE, GET and
LIST. S3 provides very fast performance that enables us to
download the largest plans within a matter of seconds.

Our solution provides a cost effective mechanism to obtain
revolutionary optimizations in the plan saving, retrieving,
and searching features for MER. Our application marks
MER as the first NASA mission to effectively leverage a
commercial cloud for a production mission operations
application. The approach offers drastic performance
improvements over the previous design, built on MySQL,
and offers enough scalability to allow MER to operate for
tens of thousands of sols without any degradation in
performance

Ensuring Consistency— Partial Plan saving in Maestro is a
vital part of the MER planning process. It allows scientists
to concurrently commit partial saves of the plans, where
their changes are localized to only a small portion of the full
plan, this limited save is done during the Refinement stages
and saves are typically scoped by instrument team. Since
the plans are bigger than the size limit imposed by
SimpleDB, we must store these plans in S3. However,
decoupling the plans with their metadata makes it
impossible for us to make conditional puts on the contents
of the plan to ensure that a commit is fully merged and does
not override changes made by a different scientist.

The Planning Software group has devised a simple, yet
elegant solution to solve this problem. Our solution stores a
canonical copy of the blob in S3 before making a
transaction in SimpleDB. Until the transaction succeeds, the
blob is unreferenced, and it does not exist from the
perspective of the application. The blob is named by the
hash of its contents, and the database row contains the hash
of the referenced blob.

When committing a plan to the database, we start by
obtaining the latest copy of the plan from S3 as referenced
by SimpleDB. In this process, we obtain the hash of the
latest copy as well as the latest plan itself. We merge the
local plan with the most up-to-date canonical copy as
known by the database. Subsequently, we generate a hash
of the local merged copy, and we store the file in S3 and
name it by its hash. We then make a conditional PUT in the
database for the same plan name, with the condition that the
latest hash that the database knows about is the copy of the
plan that we merged with. If the latest hash has changed, in
the case of someone else committing simultaneously, we
obtain the latest copy and retry our commit.

Our solution is fault tolerant. Consider the case where the
application crashes after committing a blob to S3. This
crash will not corrupt the database as this blob is yet to be
referenced by the database. On the other hand, consider the
same scenario if we committed the transaction in the
database first. If we crash after committing to the database
and before inserting the blob into S3, our database is now
corrupt and cannot reference this non-existent blob.
Therefore, it is crucial to our algorithm to commit to S3
prior to making the transaction with SimpleDB.

 5

Our solution is fully transactional. Consider the scenario
where during the commit, a different user succeeds in
updating the plan while a slower client is still in the process
of updating. Since our call to update the row contains a
conditional PUT, the PUT will fail. This failure will cause
our client to update the latest copy of the plan and merge
with it before attempting to save again. Furthermore, in
cases of failed transactions, our approach offers automatic
rollbacks.

Our solution is self-maintaining. Upon a successful
transaction, we erase all existing copies of the blob that
were referenced previously at any point. This approach
minimizes the chances of orphaned blobs. Furthermore,
successful transactions erase all previous copies, which
clears the blob store of all unreferenced data. Lastly, we can
run a daemon that cleans up all unreferenced blobs that are
older than a day to safely erase all excess blobs.

Performance-Cost Comparison—As we’ve moved to a
cloud services based implementation we’ve seen a
tremendous improvement in performance, particularly with

larger plans. The following chart shows a comparison of
save times for identical plans from the same remote
machine on the same wireless network. Both axis are on a
logarithmic scale. Both data series show a roughly linear
growth in save times based on the number of activities and
in turn activity parameters, and can be approximated with
the following linear function TTotal A * C TC, where A
is the number of Activities, C is a constant factor and TC is
the non-network dependent processing time. C is
empirically observed to be significantly smaller with the
Cloud based implementation and the reason for our
improvement.

In addition to much improved performance, cost was also a
primary motivation to moving to a cloud services based
architecture. Maestro’s use of JPL’s institutional services

such as database administration and backup is summarized
below.

Resource Unit Cost Total

2 ReST servers $670/month/machin
e

$1340/month

Data storage of
2.5TB

$335/month/TB +
backup:
$500/month/TB:

$2000/month

Total Yearly Cost: ~ $40K.

Next we will provide a summary of our costs under the new
architecture.

Resource Unit Cost Total

Storage –
including backup

$165/TB/month $412.50/month

Load balancer $0.025 / hour $18/month

1 Large machine
running 24/7

$191/month $191/month

10 Large
machines 21
hrs/week

$34/month/machine $340/month

Bandwidth – 300
GB outgoing

$0.15/GB $45/month

Small instance at
JPL

$70/month $70/month

Total Yearly Cost: ~$13K

In this calculation we have included the cost of a constantly
running large machine as well as 10 machines that will be
provisioned during image processing. This conservative
estimate of the cloud-based cost we are saving $27K
annually on infrastructure costs while providing better
performance to our end users.

4. RELATED AND FUTURE WORK

Polyphony—Compared to plan persistence, image
processing, particularly mosaic generation is an even more
natural fit for moving to cloud based services. Mars
missions such as MER, Phoenix, and soon MSL all produce
large downlink products that are processed extensively to
help the client better interact with them. This imagery is

Figure 4: Comparison of Save Times – Both Axis are
Logarithmic

 6

downlinked from the spacecraft on a daily basis and
efficiently creating usable client products helps provide the
science planning team with new data at a rapid pace. One
type of processing is the tiling of high-resolution images
including the aforementioned mosaics. [5] We use tiled
images so clients can lazily load only the resolutions and
area they are currently viewing which minimizes the
download time to first view an image while allowing for
seamless zooming in when desired.

Figure 5: Polyphony Mosaic Tiles

Polyphony has been designed to manage the creation of
mosaic and image tiles in a parallel process across multiple
machines. Polyphony works by dividing up the work queues
and then provisioning multiple machines to work on
separate processing tasks in a divide and conquer approach.
These machines utilize shared storage and don’t have large
memory requirements since they use the Kakadu JPEG2000
library to only load the portion of the images that is needed
for manipulation.

Content Delivery Networks—One potential technology we
will likely utilize going forward is cloud based content
delivery networks. Since Maestro and its MSL counterpart
MSLICE have globally distributed user bases it is important
to provide speedy downloads to all corners of the Internet.
CloudFront and similar technologies offer a simple interface
for providing content to a broad user base. These content
delivery networks provide low-latency edge nodes
distributed in different locations so that instrument leads
located abroad can quickly access the most popular plans
and data products. We can heuristically determine which
products and plans are of highest interest, at a first cut
typically the most recent plans, and thus ensure that our
users perceive minimal lag.

5. CONCLUSION

In this paper we summarize how the planning process has
changed over time and why Cloud computing has proved to
be an excellent fit for MER plan persistence. We have
striven to balance implementation simplicity with our ever-
evolving performance requirements. Our first Hibernate
based implementation was designed with simplicity in mind
and worked reliably save plans for the long latency remote
user. Minimizing the number of round trips with the
addition of the ReST was a simple improvement, but only
an intermediate stage. The cloud based plan persistence
implementation is the first use of Cloud computing on a
flight mission and early user feedback has been very
favorable. As we move forward in developing the planning
and sequencing software subsystems for future missions,
including Mars Science Laboratory, we will leverage these
lessons learned and develop a similar architecture to provide
similar cost-savings and performance benefits. Vendor lock-
in is a viable concern with any application and while we
haven’t built a system that is immune to it, the cost to
migrate to another cloud provider, such as Google and their
BigTable datastore would be relatively minor. Our current
active user base benefits greatly from the high speed and
efficiency of these cloud services. Additionally, as a
development team moving to a commodity server setup has
greatly simplified the software update process.

REFERENCES

[1] Jeffrey S. Norris Mark W. Powell, Marsette A. Vona, Paul
G. Backes, Justin V. Wick. “Mars Exploration Rover
Operations with the Science Activity Planner”. IEEE
International Conference on Robotics and Automation.
2005.

[2] Jeffrey S. Norris, Mark W. Powell, Jason M. Fox,
Kenneth J. Rabe, I-Hsiang Shu. “Science Operations
Interfaces for Mars Surface Exploration”. IEEE
International Conference on Systems, Man and
Cybernetics. 2005.

[3] Mark W. Powell, Thomas M. Crockett, Jeffrey S. Norris,
and Khawaja S. Shams. “Geologic Mapping in Mars
Rover Operations” American Institute of Aeronautics and
Astronautics. 2009

[4] Michael McCurdy. “Planning Tools for Mars Surface
Operations: Human-Computer Interaction Lessons
Learned” IEEE Aerospace. 2009

[5] Khawaja S. Shams,, Dr. Mark W. Powell., Tom M.
Crockett, Jeffrey S. Norris, Ryan Rossi, Tom Soderstrom
“Polyphony: A Workflow Orchestration Framework for
Cloud Computing”. 2010.

 7

BIOGRAPHY

Joseph C. Joswig is a software
engineer at JPL within the Planning
Software Systems group. He has
worked at JPL since July 2005.
Recently his work has been focused
on developing planning sequencing
tools for Mars Science Laboratory as
well as Emergency Response
Software in support of the
Department of Homeland Security. Past work has focused
on operations for real-time and near real-time scenarios
including JPL’s ATHLETE (All Terrained Hex-Limbed
Extra Terrestrial Explorer) robot and White Sands Missile
Range’s multi-asset tests. He received both his MS in
Computer Science (2005) and his BS in Computer Science
and Engineering (2003) from the University of California,
Los Angeles.

Khawaja S. Shams is a member of
the Operations Planning Software
(OPS) Lab at the NASA Jet Propulsion
Laboratory. At the OPS Lab, Khawaja
develops software that contributes to
the operations of a variety of robotic
assets including ground, airborne, and
waterborne robots, as well as robots
on Mars. He leads a variety of
software projects, and he serves as the Cognizant Engineer
of server side components for the Activity Planning and
Sequencing Subsystem (APSS) for the Mars Science
Laboratory. Khawaja works closely with the Office of the
CIO at JPL to co-lead the efforts to securely deliver the
benefits of cloud computing to missions across NASA. He
serves as an advisor on the CIO Technology Advisory
Board (CTAB) at JPL. Khawaja obtained his bachelors in
computer science from UC San Diego, and his Masters in
Computer Science from Cornell. He is currently pursuing a
PhD in robotics at USC under the advisement of Maja
Matari.

 8

